Abstract
The transport of 2-keto-D-gluconate (alpha-D-arabino-2-hexulopyranosonic acid; 2KGA) in vesicles prepared from glucose-grown Pseudomonas putida occurs by a saturable process with a Km of 110.0 +/- 2.9 microM and a Vmax. of 0.55 +/- 0.04 nmol X min-1 X (mg of protein)-1. The provision of phenazine methosulphate/ascorbate or L-malate leads to an accumulation of intravescular 2KGA, a decrease in the Km value to 50 +/- 2.1 microM and 35 +/- 2.9 microM respectively and no change in the Vmax. In the presence of electron donors the transport of 2KGA is inhibited by the respiratory poisons antimycin A, rotenone and the uncoupler 2,4-dinitrophenol. 2KGA transport is also competitively inhibited by 4-deoxy-4-fluoro-2-keto- or 3-deoxy-3-fluoro-2-keto-D-gluconate with Ki values of 50 microM and 160 microM respectively. The carrier system for 2KGA is repressed in vesicles from cells grown on succinate. Such vesicles transport 2KGA by non-specific physical diffusion with a Km value of infinity in the absence or presence of electron donors. Vesicles from glucose or succinate grown cells, in the presence of phenazine methosulphate/ascorbate at pH 6.6, generate a proton-motive force (delta p) of approx. 140 mV. The delta p, composed of proton gradient (delta pH) and a membrane potential (delta psi), is collapsed in the presence of dinitrophenol. Based on the results obtained with valinomycin, nigericin and carbonyl cyanide m-chlorophenylhydrazone, the active transport of 2KGA at pH 6.6 is coupled predominately to the delta pH component of delta p.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献