Affiliation:
1. Department of Urology, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, China
2. Department of Laboratory, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, China
Abstract
Abstract
Background: Bladder cancer is the ninth most-common cancer worldwide and it is associated with high morbidity and mortality. Tumor mutational burden (TMB) is an emerging biomarker in cancer characterized by microsatellite instability. TMB has been described as a powerful predictor of tumor behavior and response to immunotherapy.
Methods: A total of 443 bladder cancer samples obtained from The Cancer Genome Atlas (TCGA) were analyzed for mutation types, TMB values, and prognostic value of TMB. Differentially expressed genes (DEGs) were identified from the TMB groupings. Functional analysis was performed to assess the prognostic value of the first 30 core genes. CIBERSORT algorithm was used to determine the correlation between the immune cells and TMB subtypes.
Results: Single nucleotide polymorphism (SNP) and C>T were reported as the most common missense mutations and we also identified a high rate of mutations in TP53, TTN, KMT2D. Bladder cancer patients with high TMB showed a better prognosis. Enrichment analysis of the DEGs revealed that they were involved in the regulation of the P13K-Akt signaling pathway, cytokine–cytokine receptor interaction, and Ras signaling pathway. The high expression of hub genes ADRA2A, CXCL12, S1PR1, ADAMTS9, F13A1, and SPON1 was correlated with poor overall survival. Besides, significant differences in the composition of the immune cells of T cells CD8, T cells CD4 memory activated, NK cells resting and Mast cells resting were observed.
Conclusions: The present study provides a comprehensive and systematic analysis of the prediction of TMB in bladder cancer and its clinical significance. Also, the study provides additional prognostic information and opportunities for immunotherapy in bladder cancer.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Reference51 articles.
1. Oncogene miR-187-5p is associated with cellular proliferation, migration, invasion, apoptosis and an increased risk of recurrence in bladder cancer;Li;Biomed. Pharmacother.,2018
2. Bladder cancer: present and future;Martinez Rodriguez;Med. Clin. (Barc.),2017
3. Bladder cancer;Grayson;Nature,2017
4. MiR-302b regulates cell functions and acts as a potential biomarker to predict recurrence in bladder cancer;Li;Life Sci.,2018
5. Bladder cancer: risk factors, diagnosis, and management;Farling;Nurse Pract.,2017
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献