Evidence for similar conformational changes in α2-macroglobulin on reaction with primary amines or proteolytic enzymes

Author:

Björk Ingemar1,Fish Wayne W.2

Affiliation:

1. Department of Medical and Physiological Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, Box 575, S-751 23 Uppsala, Sweden

2. Department of Biochemistry, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, U.S.A.

Abstract

Reactions of α2-macroglobulin (α2M) with primary amines (ammonium chloride, methylammonium chloride and ethylammonium chloride) or proteolytic enzymes (trypsin, chymotrypsin and thrombin) resulted in changes of the absorption, fluorescence and circular-dichroism spectra and of the sedimentation coefficient of the inhibitor. All physico-chemical changes caused by the inactivation of α2M by the amines were identical with, or highly similar to, those induced by the formation of the enzyme–inhibitor complexes. This suggests that similar conformational changes of the inhibitor occur in the two types of reactions. The frictional ratio, calculated from the increase in sedimentation coefficient, decreased from 1.67 for untreated α2M to 1.57 for the amine- or proteinase-treated inhibitor. This change is due to a decrease in either asymmetry or hydration of the protein, resulting in a slightly smaller hydrodynamic volume. The circular-dichroism analyses indicated that the reaction of α2M with either amines or proteinases is accompanied by a loss of the small amount (about 5%) of α-helix of the untreated protein. The changes of u.v. absorption and fluorescence suggested that about one out of the eight to ten tryptophan residues of each α2M subunit is buried as a result of the conformational change. All spectroscopic and hydrodynamic changes that were observed are compatible with a spatial rearrangement of the subunits of α2M, as implicated by the ‘trap’ hypothesis for the mechanism of inhibition of proteinases. However, a conformational change involving a decrease in the hydrodynamic volume of each subunit cannot be excluded.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3