Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys10 and His106

Author:

Wang Xin-Yu12,Zhang Zai-Rong13,Perrett Sarah1

Affiliation:

1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China

2. Department of Biophysics, Institute of Physics, Nankai University, 94 Weijin Road, Tianjin 300071, People's Republic of China

3. Graduate University of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China

Abstract

GSTs (glutathione transferases) are an important class of enzymes involved in cellular detoxification. GSTs are found in all classes of organisms and are implicated in resistance towards drugs, pesticides, herbicides and antibiotics. The activity, structure and folding, particularly of eukaryotic GSTs, have therefore been widely studied. The crystal structure of EGST (GST from Escherichia coli) was reported around 10 years ago and it suggested Cys10 and His106 as potential catalytic residues. However, the role of these residues in catalysis has not been further investigated, nor have the folding properties of the protein been described. In the present study we investigated the contributions of residues Cys10 and His106 to the activity and stability of EGST. We found that EGST shows a complex equilibrium unfolding profile, involving a population of at least two partially folded intermediates, one of which is dimeric. Mutation of residues Cys10 and His106 leads to stabilization of the protein and affects the apparent steady-state kinetic parameters for enzyme catalysis. The results suggest that the imidazole ring of His106 plays an important role in the catalytic mechanism of the enzyme, whereas Cys10 is involved in binding of the substrate, glutathione. Engineering of the Cys10 site can be used to increase both the stability and GST activity of EGST. However, in addition to GST activity, we discovered that EGST also possesses thiol:disulfide oxidoreductase activity, for which the residue Cys10 plays an essential role. Further, tryptophan quenching experiments indicate that a mixed disulfide is formed between the free thiol group of Cys10 and the substrate, glutathione.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3