Enzyme redesign and interactions of substrate analogues with sterol methyltransferase to understand phytosterol diversity, reaction mechanism and the nature of the active site

Author:

Nes W.D.1

Affiliation:

1. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, U.S.A.

Abstract

Several STM (sterol methyltransferase) genes have been cloned, sequenced and expressed in bacteria recently, making it possible to address questions of the relationship between sterol structure and function. The active site and mechanism of action of a set of phylogenetically diverse SMTs have been probed by site-directed mutagenesis as well as by using substrate and related analogues of the SMT-catalysed reaction. An active-site model has been developed that is in accord with the results presented, which is consistent with the hypothesis that SMTs are bifunctional enzymes kinetically responsible to bind Δ24-acceptor sterols of specific steric and electronic character and rigid orientation imposed by multiple hydrophobic active site contacts exacted from a common waxy core. Functional divergence influenced by the architectural role of sterols in membranes is considered to govern the evolution of product distribution and specificity of individual SMTs as discussed.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3