The role of polyamine catabolism in anti-tumour drug response

Author:

Casero R.A.1,Wang Y.1,Stewart T.M.1,Devereux W.1,Hacker A.1,Wang Y.1,Smith R.,Woster P.M.2

Affiliation:

1. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD 21231, U.S.A.

2. Wayne State University, Detroit, MI 48202, U.S.A.

Abstract

Interest in polyamine catabolism has increased since it has been directly associated with the cytotoxic response of multiple tumour types to exposure to specific anti-tumour polyamine analogues. Human polyamine catabolism was considered to be a two-step pathway regulated by the rate-limiting enzyme spermidine/spermine N1-acetyltransferase (SSAT) that provides substrate for an acetylpolyamine oxidase (APAO). Further, the super-induction of SSAT by several anti-tumour polyamine analogues has been implicated in the cytotoxic response of specific solid-tumour phenotypes to these agents. This high induction of SSAT has been correlated with cellular response to the anti-tumour polyamine analogues in several systems and considerable progress has been made in understanding the molecular mechanisms that regulate the analogue-induced expression of SSAT. A polyamine response element has been identified and the transacting transcription factors that bind and stimulate transcription of SSAT have been cloned and characterized. The link between SSAT activity and cellular toxicity is thought to be based on the production of H2O2 by the activity of the constitutive APAO that uses the SSAT-produced acetylated polyamines. The high induction of SSAT and the subsequent activity of APAO are linked to the cytotoxic response of some tumour cell types to specific polyamine analogues. However, we have recently cloned a variably spliced human polyamine oxidase (PAOh1) that is inducible by specific polyamine analogues, efficiently uses unacetylated spermine as a substrate, and also produces toxic H2O2 as a product. The results of studies with PAOh1 suggest that it is an additional enzyme in polyamine catabolism that has the potential to significantly contribute to polyamine homoeostasis and drug response. Most importantly, PAOh1 is induced by specific polyamine analogues in a tumour-phenotype-specific manner in cell lines representative of the major forms of solid tumours, including lung, breast, colon and prostate. The sensitivity to these anti-tumour polyamine analogues can be significantly reduced if the tumour cells are co-treated with 250 μM of the polyamine oxidase inhibitor N1, N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72,527), suggesting that the H2O2 produced by PAOh1 does in fact play a direct role in the observed cytotoxicity. These results strongly implicate PAOh1 as a new target that, in combination with SSAT, may be exploited for therapeutic advantage. The current understanding of the role and regulation of these two important polyamine catabolic enzymes are discussed.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3