The molecular mechanisms of human separase regulation

Author:

Yu Jun1,Morgan David O.2,Boland Andreas1ORCID

Affiliation:

1. 1Department of Molecular and Cellular Biology, University of Geneva, CH-1211 Geneva, Switzerland

2. 2Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, U.S.A.

Abstract

Sister chromatid segregation is the final irreversible step of mitosis. It is initiated by a complex regulatory system that ultimately triggers the timely activation of a conserved cysteine protease named separase. Separase cleaves the cohesin protein ring that links the sister chromatids and thus facilitates their separation and segregation to the opposite poles of the dividing cell. Due to the irreversible nature of this process, separase activity is tightly controlled in all eukaryotic cells. In this mini-review, we summarize the latest structural and functional findings on the regulation of separase, with an emphasis on the regulation of the human enzyme by two inhibitors, the universal inhibitor securin and the vertebrate-specific inhibitor CDK1–cyclin B. We discuss the two fundamentally different inhibitory mechanisms by which these inhibitors block separase activity by occluding substrate binding. We also describe conserved mechanisms that facilitate substrate recognition and point out open research questions that will guide studies of this fascinating enzyme for years to come.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3