Two mutations in troponin I that cause hypertrophic cardiomyopathy have contrasting effects on cardiac muscle contractility

Author:

BURTON David1,ABDULRAZZAK Hassan2,KNOTT Adam2,ELLIOTT Kathryn3,REDWOOD Charles3,WATKINS Hugh3,MARSTON Steven2,ASHLEY Chris1

Affiliation:

1. University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, U.K.

2. Department of Cardiac Medicine, Imperial College School of Medicine, National Heart and Lung Institute, London SW3 6LY, U.K.

3. Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, U.K.

Abstract

We investigated the effects of two mutations in human cardiac troponin I, Arg145 → Gly and Gly203 → Ser, that are reported to cause familial hypertrophic cardiomyopathy. Mutant and wild-type troponin I, overexpressed in Escherichia coli, were used to reconstitute troponin complexes in vanadate-treated guinea pig cardiac trabeculae skinned fibres, and thin filaments were reconstituted with human cardiac troponin and tropomyosin along with rabbit skeletal muscle actin for in vitro motility and actomyosin ATPase assays. Troponin containing the Arg145 → Gly mutation inhibited force in skinned trabeculae less than did the wild-type, and had almost no inhibitory function in the in vitro motility assay. There was an enhanced inhibitory function with mixtures of 10–30% [Gly145]troponin I with the wild-type protein. Skinned trabeculae reconstituted with troponin I containing the Gly203 → Ser mutation and troponin C produced less Ca2+-activated force (64±8% of wild-type) and demonstrated lower Ca2+ sensitivity [ΔpCa50 (log of the Ca2+ concentration that gave 50% of maximal activation) 0.25 unit (P < 0.05)] compared with wild-type troponin I, but thin filaments containing [Ser203]-troponin I were indistinguishable from those containing the wild-type protein in in vitro motility and ATPase assays. Thus these two mutations each result in hypertrophic cardiomyopathy, but have opposite effects on the overall contractility of the muscle in the systems we investigated, indicating either that we have not yet identified the relevant alteration in contractility for the Gly203 → Ser mutation, or that the disease does not result directly from any particular alteration in contractility.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3