Affiliation:
1. Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, U.K.
Abstract
1. Adipocytes were isolated from the interscapular brown fat of male rats maintained at 21 degrees C. These animals were controls, streptozotocin-diabetics or 2-day insulin-treated diabetics. 2. With adipocytes from diabetic animals, maximum rates of noradrenaline-stimulated O2 uptake were decreased by 58%, and the Bmax. of [3H]GDP binding to mitochondria was decreased by 55%. Insulin administration reversed both of these changes. 3. Streptozotocin-diabetes increased basal lipolysis in adipocytes incubated with adenosine deaminase (1 unit/ml), decreased the EC50 (concn. giving 50% of maximum effect) for noradrenaline, but did not change the maximum rate of noradrenaline-stimulated lipolysis. Except for some small differences at very low concentrations (10-100 pM), diabetes or insulin treatment did not alter the sensitivity of noradrenaline-stimulated lipolysis or O2 uptake to the inhibitory effect of N6-phenylisopropyladenosine. It is therefore concluded that the lesion(s) in thermogenesis in diabetes are not attributable to any changes in lipolysis. 4. Blood flow through interscapular brown fat, measured by accumulation of [14C]DDT [14C-labelled 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] was increased by 2.3-fold 70 min after a single administration of insulin to diabetic rats. This treatment decreased blood flow through epididymal white fat by 58%. 5. Propranolol treatment of diabetic rats muted the ability of insulin treatment to increase the maximum rate of noradrenaline-stimulated O2 uptake, suggesting that this action of insulin may be a secondary one rather than a direct effect of the hormone on the adipocytes.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献