The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport

Author:

Zhang Tuo1,Kuliyev Eziz2,Sui Dexin1,Hu Jian12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A.

2. Department of Chemistry, Michigan State University, East Lansing, MI, U.S.A.

Abstract

Abstract The Zrt-/Irt-like protein (ZIP) family mediates zinc influx from extracellular space or intracellular vesicles/organelles, playing a central role in systemic and cellular zinc homeostasis. Out of the 14 family members encoded in human genome, ZIP4 is exclusively responsible for zinc uptake from dietary food and dysfunctional mutations of ZIP4 cause a life-threatening genetic disorder, Acrodermatitis Enteropathica (AE). About half of the missense AE-causing mutations occur within the large N-terminal extracellular domain (ECD), and our previous study has shown that ZIP4–ECD is crucial for optimal zinc uptake but the underlying mechanism has not been clarified. In this work, we examined zinc binding to the isolated ZIP4–ECD from Pteropus Alecto (black fruit bat) and located zinc-binding sites with a low micromolar affinity within a histidine-rich loop ubiquitously present in ZIP4 proteins. Zinc binding to this protease-susceptible loop induces a small and highly localized structural perturbation. Mutagenesis and functional study on human ZIP4 by using an improved cell-based zinc uptake assay indicated that the histidine residues within this loop are not involved in preselection of metal substrate but play a role in promoting zinc transport. The possible function of the histidine-rich loop as a metal chaperone facilitating zinc binding to the transport site and/or a zinc sensor allosterically regulating the transport machinery was discussed. This work helps to establish the structure/function relationship of ZIP4 and also sheds light on other metal transporters and metalloproteins with clustered histidine residues.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3