Crystal structure of human APPL BAR-PH heterodimer reveals a flexible dimeric BAR curve: implication in mutual regulation of endosomal targeting

Author:

Chen Yujie1,Zhang Wen1,Chen Bin234,Liu Ying5,Dong Yuhui5,Xu Aimin234,Hao Quan1ORCID

Affiliation:

1. School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China

2. Department of Medicine, The University of Hong Kong, Hong Kong, China

3. Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China

4. State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China

5. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Abstract

The APPL (adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif) family consists of two isoforms, APPL1 and APPL2. By binding to curved plasma membrane, these adaptor proteins associate with multiple transmembrane receptors and recruit various downstream signaling components. They are involved in the regulation of signaling pathways evoked by a variety of extracellular stimuli, such as adiponectin, insulin, FSH (follicle stimulating hormone), EGF (epidermal growth factor). And they play important roles in cell proliferation, apoptosis, glucose uptake, insulin secretion and sensitivity. However, emerging evidence suggests that APPL1 and APPL2 perform different or even opposite functions and the underlying mechanism remains unclear. As APPL proteins can either homodimerize or heterodimerize in vivo, we hypothesized that heterodimerization of APPL proteins might account for the mechanism. By solving the crystal structure of APPL1–APPL2 BAR-PH heterodimer, we find that the overall structure is crescent-shaped with a longer curvature radius of 76 Å, compared with 55 Å of the APPL1 BAR-PH homodimer. However, there is no significant difference of the curvature between APPL BAR-PH heterodimer and APPL2 homodimer. The data suggest that the APPL1 BAR-PH homodimer, APPL2 BAR-PH homodimer and APPL1/APPL2 BAR-PH heterodimer may bind to endosomes of different sizes. Different positive charge distribution is observed on the concave surface of APPL BAR-PH heterodimer than the homodimers, which may change the affinity of membrane association and subcellular localization. Collectively, APPL2 may regulate APPL1 function through altering the preference of endosome binding by heterodimerization.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3