DhHP-6 ameliorates hepatic oxidative stress and insulin resistance in type 2 diabetes mellitus through the PI3K/AKT and AMPK pathway

Author:

Wang Kai1,Liang Yuting1,Su Yu1,Wang Liping12ORCID

Affiliation:

1. School of Life Sciences, Jilin University, Changchun 130012, China

2. Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China

Abstract

Insulin resistance is one major features of type 2 diabetes mellitus (T2DM). Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6), a novel microperoxidase mimetic designed and synthesized based on microperoxidase 11 (MP-11), can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we showed that oral DhHP-6 could reduce blood glucose and improve insulin resistance. To investigate the mechanisms of how DhHP-6 ameliorates oxidative stress and insulin resistance, we established T2DM mouse models and glucosamine-induced HepG2 cell insulin resistance models. The results suggested that DhHP-6 decreased blood glucose, increased antioxidant enzyme activity, and inhibited glycogen synthesis in T2DM mice. In addition, DhHP-6 improved insulin resistance by activating phosphatidylinositol 3-kinase (PI3K)/AKT, and AMP-activated protein kinase (AMPK) pathway in T2DM mice. Furthermore, DhHP-6 also activated PI3K/AKT and AMPK pathway in glucosamine-induced HepG2 cells. However, LY294002 did not completely inhibit AKT phosphorylation, and partially inhibited AMPK phosphorylation, whilst compound C only partially reduced AMPK phosphorylation, and also partially inhibited AKT phosphorylation, suggesting that AKT and AMPK interact to improve insulin resistance. Thus, these data suggest that DhHP-6 attenuates insulin resistance via the PI3K/AKT and AMPK pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3