Adenosine diphosphate sulphurylase activity in leaf tissue

Author:

Burnell Jim N.1,Anderson John W.1

Affiliation:

1. Department of Botany, La Trobe University, Bundoora, Vic. 3083, Australia

Abstract

1. A new method is described for the assay of ADP sulphurylase. The method involves sulphate-dependent [32P]Pi–ADP exchange; the method is simpler, more sensitive and more direct than the method involving adenosine 5′-sulphatophosphate-dependent uptake of Pi. 2. ADP sulphurylase activity was demonstrated in crude extracts of leaf tissue from a range of plants. Crude spinach extract catalysed the sulphate-dependent synthesis of [32P]ADP from [32P]Pi; spinach extracts did not catalyse sulphate-dependent AMP–Pi, ADP–PPi or ATP–Pi exchange under standard assay conditions. ADP sulphurylase activity in spinach leaf tissue was associated with chloroplasts and was liberated by sonication. 3. Some elementary kinetics of crude spinach leaf and purified yeast ADP sulphurylases in the standard assay are described; addition of Ba2+ was necessary to minimize endogenous Pi–ADP exchange of the yeast enzyme and crude extracts of winter-grown spinach. 4. Spinach leaf ADP sulphurylase was activated by Ba2+ and Ca2+; Mg2+ was ineffective. The yeast enzyme was also activated by Ba2+. The activity of both enzymes decreased with increasing ionic strength. 5. Purified yeast and spinach leaf ADP sulphurylases were sensitive to thiol-group reagents and fluoride. The pH optimum was 8. ATP inhibited sulphate-dependent Pi–ADP exchange. Neither selenate nor molybdate inhibited sulphate-dependent Pi–ADP exchange and crude spinach extracts did not catalyse selenate-dependent Pi–ADP exchange. 6. The presence of ADP sulphurylase activity jeopardizes the enzymic synthesis of adenosine 5′-sulphatophosphate from ATP and sulphate with purified ATP sulphurylase and pyrophosphatase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3