Affiliation:
1. Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, D-53115 Bonn, Germany
Abstract
NAAG (N-acetylaspartylglutamate) is an abundant neuropeptide in the vertebrate nervous system. It is released from synaptic terminals in a calcium-dependent manner and has been shown to act as an agonist at the type II metabotropic glutamate receptor mGluR3. It has been proposed that NAAG may also be released from axons. So far, however, it has remained unclear how NAAG is transported into synaptic or other vesicles before it is secreted. In the present study, we demonstrate that uptake of NAAG and the related peptide NAAG2 (N-acetylaspartylglutamylglutamate) into vesicles depends on the sialic acid transporter sialin (SLC17A5). This was demonstrated using cell lines expressing a cell surface variant of sialin and by functional reconstitution of sialin in liposomes. NAAG uptake into sialin-containing proteoliposomes was detectable in the presence of an active H+-ATPase or valinomycin, indicating that transport is driven by membrane potential rather than H+ gradient. We also show that sialin is most probably the major and possibly only vesicular transporter for NAAG and NAAG2, because ATP-dependent transport of both peptides was not detectable in vesicles isolated from sialin-deficient mice.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献