Redox regulation of chloroplastic G6PDH activity by thioredoxin occurs through structural changes modifying substrate accessibility and cofactor binding

Author:

Née Guillaume1,Aumont-Nicaise Magali2,Zaffagnini Mirko3,Nessler Sylvie24,Valerio-Lepiniec Marielle2,Issakidis-Bourguet Emmanuelle1

Affiliation:

1. Institut de Biologie des Plantes, UMR CNRS 8618, Saclay Plant Sciences, Université Paris-Sud, 91405 Orsay, France

2. Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR CNRS 8619, Université Paris-Sud, 91405 Orsay, France

3. Laboratory of Plant Redox Biology, University of Bologna, 40126 Bologna, Italy

4. Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, UPR 3082, 91198 Gif sur Yvette, France

Abstract

In chloroplasts, redox regulation of enzyme activities by TRXs (thioredoxins) allows the co-ordination of light/dark metabolisms such as the reductive (so-called Calvin–Benson) pathway and the OPPP (oxidative pentose phosphate pathway). Although the molecular mechanisms underlying the redox regulation of several TRX-regulated enzymes have been investigated in detail, only partial information was available for plastidial G6PDH (glucose-6-phosphate dehydrogenase) catalysing the first and rate-limiting step of the OPPP. In the present study, we investigated changes in catalytic and structural properties undergone by G6PDH1 from Arabidopsis thaliana upon treatment with TRX f1, the most efficient regulator of the enzyme that did not show a stable interaction with its target. We found that the formation of the regulatory disulfide bridge that leads to activation of the enzyme allows better substrate accessibility to the active site and strongly modifies the cofactor-binding properties. Structural modelling and data from biochemical and biophysical studies of site-directed mutant proteins support a mechanism in which the positioning/function of the highly conserved Arg131 in the cofactor-binding site can be directly influenced by the redox state of the adjacent regulatory disulfide bridge. These findings constitute another example of modifications to catalytic properties of a chloroplastic enzyme upon redox regulation, but by a mechanism unique to G6PDH.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3