Ca2+ buffering in the heart: Ca2+ binding to and activation of cardiac myofibrils

Author:

SMITH Gerry A.,DIXON Henry B. F.1,KIRSCHENLOHR Heide L.1,GRACE Andrew A.1,METCALFE James C.1,VANDENBERG Jamie I.1

Affiliation:

1. Section of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.

Abstract

The measurement of cardiac Ca2+ transients using spectroscopic Ca2+ indicators is significantly affected by the buffering properties of the indicators. The aim of the present study was to construct a model of cardiac Ca2+ buffering that satisfied the kinetic constraints imposed by the maximum attainable rates of cardiac contraction and relaxation on the Ca2+ dissociation rate constants and which would account for the observed effects of 19F-NMR indicators on the cardiac Ca2+ transient in the Langendorff-perfused ferret heart. It is generally assumed that the Ca2+ dependency of myofibril activation in cardiac myocytes is mediated by a single Ca2+-binding site on troponin C. A model based on 1:1 Ca2+ binding to the myofilaments, however, was unable to reproduce our experimental data, but a model in which we assumed ATP-dependent co-operative Ca2+ binding to the myofilaments was able to reproduce these data. This model was used to calculate the concentration and dissociation constant of the ATP-independent myofilament Ca2+ binding, giving 58 and 2.0 μM respectively. In addition to reproducing our experimental data on the concentration of free Ca2+ ions in the cytoplasm ([Ca2+]i), the resulting Ca2+ and ATP affinities given by fitting of the model also provided good predictions of the Ca2+ dependence of the myofibrillar ATPase activity measured under in vitro conditions. Solutions to the model also indicate that the Ca2+ mobilized during each beat remains unchanged in the presence of the additional buffering load from Ca2+ indicators. The new model was used to estimate the extent of perturbation of the Ca2+ transient caused by different concentrations of indicators. As little as 10 μM of a Ca2+ indicator with a dissociation constant of 200 nM will cause a 20% reduction in peak-systolic [Ca2+]i and 30 μM will cause approx. 50% reduction in the peak-systolic [Ca2+]i in a heart paced at 1.0 Hz.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3