Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site

Author:

Klug Yoel A.1,Ashkenazi Avraham1,Viard Mathias23,Porat Ziv4,Blumenthal Robert2,Shai Yechiel1

Affiliation:

1. Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel

2. Section on Membrane Structure and Function, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U.S.A.

3. Basic Science Program, Leidos Biomedical Research, NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A.

4. Flow Cytometry Unit, Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract

Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus–cell and cell–cell contact sites. Overall, the findings of the present study may suggest lipid–protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3