The effect of complex-formation with polyanions on the redox properties of cytochrome c

Author:

Petersen L C,Cox R P

Abstract

1. The stable complex formed between mammalian cytochrome c and phosvitin at low ionic strength was studied by partition in an aqueous two-phase system. Oxidized cytochrome c binds to phosvitin with a higher affinity than reduced cytochrome c. The difference was equivalent to a decrease of the redox potential by 22 mV on binding. 2. Complex-formation with phosvitin strongly inhibited the reaction of cytochrome c with reagents that react as negatively charged species, such as ascorbate, dithionite, ferricyanide and tetrachlorobenzoquinol. Reaction with uncharged reagents such as NNN‘N’-tetramethylphenylenediamine and the reduced form of the N-methylphenazonium ion (present as the methylsulphate) was little affected by complex-formation, whereas oxidation of the reduced cytochrome by the positively charged tris-(phenanthroline)cobalt(III) ion was greatly stimulated. 3. A similar pattern of inhibition and stimulation of reaction rates was observed when phosvitin was replaced by other macromolecular polyanions such as dextran sulphate and heparin, indicating that the results were a general property of complex-formation with polyanions. A weaker but qualitatively similar effect was observed on addition of inositol hexaphosphate and ATP. 4. It is suggested that the effects of complex-formation with polyanions on the reactivity of cytochrome c with redox reagents are mainly the result of replacing the positive charge on the free cytochrome by a net negative charge. Any steric effects on polyanion binding are small in comparison with such electrostatic effects.

Publisher

Portland Press Ltd.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3