Nanodomains in cardiopulmonary disorders and the impact of air pollution

Author:

Cattani-Cavalieri Isabella123,Valença Samuel dos Santos3,Schmidt Martina12ORCID

Affiliation:

1. Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands

2. Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

3. Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Air pollution is a major environmental threat and each year about 7 million people reported to die as a result of air pollution. Consequently, exposure to air pollution is linked to increased morbidity and mortality world-wide. Diesel automotive engines are a major source of urban air pollution in the western societies encompassing particulate matter and diesel exhaust particles (DEP). Air pollution is envisioned as primary cause for cardiovascular dysfunction, such as ischemic heart disease, cardiac dysrhythmias, heart failure, cerebrovascular disease and stroke. Air pollution also causes lung dysfunction, such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and specifically exacerbations of these diseases. DEP induces inflammation and reactive oxygen species production ultimately leading to mitochondrial dysfunction. DEP impair structural cell function and initiate the epithelial-to-mesenchymal transition, a process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue repair and eventually leading to fibrosis. Targeting cyclic adenosine monophosphate (cAMP) has been implicated to alleviate cardiopulmonary dysfunction, even more intriguingly cAMP seems to emerge as a potent regulator of mitochondrial metabolism. We propose that targeting of the mitochondrial cAMP nanodomain bear the therapeutic potential to diminish air pollutant — particularly DEP — induced decline in cardiopulmonary function.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3