Affiliation:
1. Agricultural Research Council Food Research Institute, Colney Lane, Norwich, NOR 7OF, U.K.
Abstract
An enzyme preparation that catalyses the deacylation of mono- and di-acyl phospholipids, galactosyl diglycerides, mono- and di-glycerides has been partially purified from potato tubers. The preparation also hydrolyses methyl and p-nitrophenyl esters and acts preferentially on esters of long-chain fatty acids. Triglycerides, wax esters and sterol esters are not hydrolysed. The same enzyme preparation catalyses acyl transfer reactions in the presence of alcohols and also catalyses the synthesis of wax esters from long-chain alcohols and free fatty acids. Gel filtration, DEAE-cellulose chromatography and free-flow electrophoresis failed to achieve any separation of the acyl-hydrolase activities towards different classes of acyl lipids (phosphatidylcholine, monogalactosyl diglyceride, mono-olein, methyl palmitate and p-nitrophenyl palmitate) or any separation of these activities from a major protein component. For each class of lipid the acyl-hydrolase activity was subject to substrate inhibition, was inhibited by relatively high concentrations of di-isopropyl phosphorofluoridate and the pH responses were changed by Triton X-100. The hydrolysis of phosphatidylcholine was stimulated 30–40-fold by Triton X-100. The specific activities of the potato enzyme with galactolipids were at least 70 times higher than those reported for a homogeneous galactolipase enzyme purified from runner bean leaves. The possibility that a single lipolytic acyl-hydrolase enzyme is responsible for the deacylation of several classes of acyl lipid is discussed.
Cited by
182 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献