A physiological role of Mn2+ in the regulation of cytosolic phosphoenolpyruvate carboxykinase from rat liver is unlikely

Author:

Maggini S1,Stoecklin-Tschan F B1,Mörikofer-Zwez S1,Walter P1

Affiliation:

1. Department of Biochemistry, University of Basel, Vesalianum, Vesalgasse 1, CH-4051 Basel, Switzerland

Abstract

A cytosolic cell-free system prepared from rat liver was used to study the effect of bivalent cations on the activity of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Steady-state concentrations of oxaloacetate in the range 5-50 microM were generated from increasing concentrations of malate+fumarate (10:1); 2 mM ITP and 3 mM Mg2+ were added as cofactors. Micromolar concentrations of Mn2+, Fe2+ and, to a lesser extent, of Zn2+ and Co2+ were shown to stimulate PEPCK activity. Vmax. (mumol/min per g of liver) increased from 0.67 to 1.68 on addition of 5 microM Fe2+ and to 2.34 with 2 microM Mn2+, whereas no significant effect on the Km for oxaloacetate was observed. The apparent K(a) values (total) were 0.62 microM for Mn2+, 1.48 microM for Zn2+, 1.92 microM for Co2+ and 3.37 microM for Fe2+, being 2-8-fold lower than the corresponding published values. Variations of the free Mn2+ concentration were obtained (a) by increasing the Mn2+ concentration (i.e. activation curve) and (b) by simultaneous addition of Mn2+ and increasing concentrations of the chelating agent EGTA (i.e. inactivation curve). Different results were obtained for the activation and inactivation curves. The inactivation curve showed that PEPCK activity was almost unaffected by variations of the free Mn2+ concentration over the range 0.05-0.15 microM. Under comparable experimental conditions, rat liver arginase (another Mn(2+)-dependent enzyme) was completely inactivated. From kinetic evidence, the existence of two distinct molecular forms of cytosolic rat liver PEPCK with different Mn2+ affinities is postulated. Considering the high affinity of PEPCK for Mn2+ and its relative insensitivity to changes in the free Mn2+ concentration, it seems rather unlikely that changes in the free cation concentration play a major role in regulating PEPCK activity in vivo.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3