Involvement of Ca2+-activated K+ channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats

Author:

Guo Shujin12,Shen Yongchun1,He Guangming1,Wang Tao1,Xu Dan1,Wen Fuqiang1

Affiliation:

1. Laboratory of Pulmonary Diseases and Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China

2. The Affiliated Hospital of University of Electronic Science and Technology of China, Internal Medicine of Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China

Abstract

Pulmonary artery hypertension (PAH) is an incurable disease associated with the proliferation of pulmonary artery smooth muscle cells (PASMCs) and vascular remodeling. The present study examined whether TRAM-34, a highly selective blocker of calcium-activated potassium channel 3.1 (Kca3.1), can help prevent such hypertension by reducing proliferation in PASMCs. Rats were exposed to hypoxia (10% O2) for 3 weeks and treated daily with TRAM-34 intraperitoneally from the first day of hypoxia. Animals were killed and examined for vascular hypertrophy, Kca3.1 expression, and downstream signaling pathways. In addition, primary cultures of rat PASMCs were exposed to hypoxia (3% O2) or normoxia (21% O2) for 24 h in the presence of TRAM-34 or siRNA against Kca3.1. Activation of cell signaling pathways was examined using Western blot analysis. In animal experiments, hypoxia triggered significant medial hypertrophy of pulmonary arterioles and right ventricular hypertrophy, and it significantly increased pulmonary artery pressure, Kca3.1 mRNA levels and ERK/p38 MAP kinase signaling. These effects were attenuated in the presence of TRAM-34. In cell culture experiments, blocking Kca3.1 using TRAM-34 or siRNA inhibited hypoxia-induced ERK/p38 signaling. Kca3.1 may play a role in the development of PAH by activating ERK/p38 MAP kinase signaling, which may then contribute to hypoxia-induced pulmonary vascular remodeling. TRAM-34 may protect against hypoxia-induced PAH.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3