[3Fe-4S]↔[4Fe-4S] cluster interconversion in Desulfovibrio africanus ferredoxin III: properties of an Asp14→Cys mutant

Author:

BUSCH Johanneke L. H.1,BRETON Jacques L.1,BARTLETT Barry M.2,ARMSTRONG Fraser A.3,JAMES Richard2,THOMSON Andrew J.1

Affiliation:

1. School of Chemical Sciences, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ

2. School of Biological Sciences, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ

3. Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.

Abstract

The 8Fe ferredoxin III from Desulfovibrio africanus is a monomeric protein which contains two [4Fe-4S]2+/1+ clusters, one of which is labile and can readily and reversibly lose one Fe under oxidative conditions to yield a [3Fe-4S]1+/0 cluster. This 4Fe cluster has an S = 3/2 ground spin state instead of S = 1/2 in the reduced +1 state [George, Armstrong, Hatchikian and Thomson (1989) Biochem. J.264, 275-284]. The co-ordination to this cluster is unusual in that an aspartate (Asp14, D14) is found where a cysteine residue normally occurs. Using a mutant protein obtained from the overexpression in Escherichia coli of a synthetic gene in which Asp14, the putative ligand to the removable Fe, has been changed to Cys, we have studied the cluster interconversion properties of the labile cluster. Analysis by EPR and magnetic-circular-dichroism spectroscopies showed that the Asp14 → Cys (D14C) mutant contains two [4Fe-4S]2+/1+ clusters, both with S = 1/2 in the reduced state. Also, unlike in native 8Fe D. africanus ferredoxin III, the 4Fe ↔ 3Fe cluster interconversion reaction was found to be sluggish and did not go to completion. It is inferred that the reversibility of the reaction in the native protein is due to the presence of the aspartate residue at position 14 and that this residue might protect the [3Fe-4S] cluster from further degradation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3