DEPDC1 promotes cell proliferation and suppresses sensitivity to chemotherapy in human hepatocellular carcinoma

Author:

Zhou Chao1,Wang Pu1,Tu Mengtian1,Huang Yi2,Xiong Fei1,Wu Yue3ORCID

Affiliation:

1. Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, China

2. Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, China

3. Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, China

Abstract

Abstract Background: Hepatocellular carcinoma (HCC) is one of the major causes of tumor-related morbidity and mortality worldwide. Accumulating evidence has revealed that aberrant expression of crucial cancer-related genes contributes to hepatocellular carcinogenesis. This study aimed to characterize the biological role of DEP domain containing 1 (DEPDC1), a novel cancer-related gene, in HCC and illuminate the potential molecular mechanisms involved. Materials and methods: Quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemical (IHC) staining were used to characterize the expression patterns of DEPDC1 in tumorous tissues and adjacent normal tissues. Kaplan–Meier survival analysis was launched to evaluate the relationship between DEPDC1 expression and overall survival. CCK8 assay, colony formation and flow cytometry were performed to investigate the effects of DEPDC1 on HCC cell viability, clonogenic capability and cell apoptosis. Murine xenograft models were established to determine the effect of DEPDC1 on tumor growth in vivo. SP600125, a JNK specific inhibitor, was applied to carriy out mechanistic studies. Results: DEPDC1 was significantly up-regulated in HCC tissues compared with para-cancerous tissues. Besides, patients with high DEPDC1 expression experienced a significantly shorter overall survival. Functional investigations demonstrated that DEPDC1 overexpression facilitated HCC cell proliferation and suppressed cell apoptosis, whereas DEPDC1 depletion inhibited cell proliferation and promoted cell apoptosis. Furthermore, DEPDC1 ablation suppressed tumorigenecity of HCC cells in murine xenograft models. Mechanistic studies uncovered that JNK signaling pathway mediated the promoting effects of DEPDC1 on HCC cell viability and chemotherapy resistance. Conclusion: Collectively, our data may provide some evidence for DEPDC1 as a candidate therapeutic target for HCC.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3