Ceruloplasmin in neurodegenerative diseases

Author:

Texel Sarah J.1,Xu Xueying2,Harris  Z. Leah2

Affiliation:

1. Department of Neuroscience, Johns Hopkins University Baltimore, MD 21287, U.S.A.

2. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University and School of Medicine, Baltimore, MD 21205, U.S.A.

Abstract

Two decades ago, patients lacking circulating serum ceruloplasmin (Cp) presented with neurodegeneration associated with brain iron accumulation. These patients, with mutations in the MCO (multi-copper oxidase), Cp, revealed an essential role for Cp in iron homoeostasis. The patients were diagnosed in adulthood with CNS (central nervous system) disease and progressed rapidly, making understanding the mechanism of disease imperative. We now know that (i) Cp regulates the efficiency of iron efflux, (ii) Cp stabilizes ferroportin membrane expression, (iii) GPI (glycosylphosphatidylinositol)-linked Cp is the predominant form expressed in brain, (iv) Cp functions as a ferroxidase and regulates the oxidation of Fe2+ to Fe3+, (v) Cp does not bind to transferrin directly, and (vi) Cp is one member of a family of mammalian MCOs, which includes hephaestin. It is still unclear how an absence of Cp results in neurodegeneration: is the iron accumulation a primary or secondary injury? Although it is attractive to invoke an iron-mediated oxidative stress mechanism for the neuronal injury and degeneration in aceruloplasminaemia, our data suggest limited redox injury in the brains of mice lacking MCO. In fact, we propose a role for neuronal iron starvation with associated astrocyte and microglial iron overload. With the defect in aceruloplasminaemia being one of inefficient iron efflux from macrophages, we believe that the iron is trapped in a compartment not readily available to participate in oxyradical injury. It is likely that different mechanisms of neuronal cell protection are offered by astrocytes and microglia, and, once these cells are damaged, neuronal survival is compromised.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3