Author:
Vickers J D,Kinlough-Rathbone R L,Mustard J F
Abstract
Experiments with washed platelets from rabbits demonstrate that stimulation with a low concentration of thrombin (0.1 unit/ml) that causes maximal aggregation and partial release of granule contents does not significantly decrease the amount of phosphatidylinositol 4,5-bisphosphate [PtdIns (4,5)P2] at 10s; this contrasts with ADP stimulation. The amount of PtdIns (4,5)P2 was significantly decreased by a higher concentration of thrombin (0.3 unit/ml). Increased turnover of the PtdIns (4,5)P2 at 60s was indicated by changes in labelling with [3H]glycerol in platelets stimulated with both concentrations of thrombin. An unexpected observation with the lower thrombin concentration was a significant increase in the amount of phosphatidylinositol (PtdIns) at 10s. This contrasts with data from other laboratories, which indicate that thrombin causes a significant decrease in PtdIns . At 60s, with the lower concentration of thrombin, PtdIns was significantly decreased. With the higher concentration of thrombin there was a significant decrease in the amount of PtdIns at 10s, in keeping with the data from other laboratories. The initial increase in PtdIns may not have been observed by other investigators because higher concentrations of thrombin were used. The reaction involved in this initial increase in the amount of PtdIns does not appear to be increased degradation of PtdIns4P or PtdIns (4,5)P2, since their total amount was unchanged at 10s. The magnitude of the increase in PtdIns is such that more than the existing pool of phosphatidic acid would have to be converted into PtdIns to account for the increase. It is suggested that synthesis of phosphatidic acid de novo from dihydroxyacetone phosphate and glycerol 3-phosphate might be the source of phosphatidic acid, which leads to increased PtdIns at 10s with the lower concentration of thrombin. Thus it appears that the initial response of platelets to thrombin does not require an early change in PtdIns (4,5)P2 and may involve stimulation of synthesis de novo of PtdIns via phosphatidic acid.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献