HADC regulates the diabetic vascular endothelial dysfunction by targetting MnSOD

Author:

Hou Qian1,Hu Ke2,Liu Xiaofeng1,Quan Jiao1,Liu Zehao3

Affiliation:

1. Department of Nutrition, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China

2. Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China

3. Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China

Abstract

Vascular dysfunction is a common result of diabetes in humans. However, the mechanism underlying diabetic vascular dysfunction is not fully understood. Here in the present study, we showed that the histone deacetylase 2 (HDAC2) promoted the endothelial dysfunction induced by diabetes. The expression and activity of HDAC2 were up-regulated in vascular endothelial cells (ECs) from diabetic patients and mice. The expression of HDAC2 was also increased by high glucose stress in isolated human ECs. HDAC2 knockdown repressed the proliferation rate and promoted high glucose-induced apoptosis of ECs, which was associated with the activation of apoptotic pathways (Bcl-2, Caspase 3, and Bax). By contrast, HDAC2 overexpression led to opposing results. Significantly, we observed that HDAC2 regulated the accumulation of reactive oxygen species (ROS) induced by high glucose in ECs, which accounted for the effects of HDAC2 on proliferation and apoptosis because antioxidants, N-acetyl-l-cysteine (NAC) or MnTBAP treatment blocked the effects of HDAC2 on apoptosis of ECs under high glucose condition. Mechanism study revealed that HDAC2 bound to the promoter of MnSOD and repressed the expression of MnSOD by regulating the level of acetylated H3K9 and H3K27, which led to the promotion of oxidative stress and contributed to the function of HDAC2 in ECs under high glucose condition. Altogether, our evidence demonstrated that HDAC2-MnSOD signaling was critical in oxidative stress and proliferation as well as the survival of ECs under high glucose condition.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3