Affiliation:
1. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
Abstract
Modification of Escherichia coli phosphofructokinase-2 (Pfk-2) with pyrene maleimide (PM) results in a rapid inactivation of the enzyme. The loss of enzyme activity correlates with the incorporation of 2 mol of PM/mol of subunit and the concomitant dissociation of the dimeric enzyme. The two modified residues were identified as Cys-238 and Cys-295. In the presence of the negative allosteric effector, MgATP, Cys-238 was the only modified cysteine residue. Kinetic characterization of the Cys-238-labelled Pfk-2 indicates that the enzyme is fully active, with the kinetic constants (Km, kcat) being almost identical to the ones obtained for the native enzyme. The modified enzyme is a monomer in the absence of ligands and, like the native enzyme, behaves as a tetramer in the presence of the nucleotide. However, in the presence of fructose-6-phosphate (fru-6-P) and ATP−4, the enzyme behaves as a dimer, suggesting that the monomers undergo re-association in the presence of the substrates and that the active species is a dimer. Modification of Pfk-2 with eosin-5-maleimide (EM) results in the labelling of Cys-295. This modified enzyme is inactive and is not able to bind to the allosteric effector, remaining as a dimer in its presence. Nonetheless, Cys-295-labelled Pfk-2 is able to bind to the substrate fru-6-P in an hyperbolic fashion with a Kd value that is 6-fold higher than the one determined for the native enzyme. These are the first residues to be implicated in the activity and/or structure of the Pfk-2.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献