The tumour promoter okadaic acid inhibits reticulocyte-lysate protein synthesis by increasing the net phosphorylation of elongation factor 2

Author:

Redpath N T1,Proud C G1

Affiliation:

1. Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

Abstract

Okadaic acid, a tumour promoter which potently inhibits protein phosphatases, inhibited translation in the reticulocyte-lysate cell-free system. Inhibition was dose-dependent, with half-maximal effects occurring at 20-40 nM-okadaic acid. Inhibition of translation by okadaic acid resulted in the accumulation of polyribosomes, indicating that it was due to a decrease in the rate of elongation relative to initiation. Okadaic acid (at concentrations which inhibited translation) caused increased phosphorylation of a number of proteins in the lysate. Prominent among these was a protein of Mr 100,000, which has previously been identified as elongation factor 2 (EF-2). EF-2 is a specific substrate for a Ca2+/calmodulin-dependent protein kinase, which phosphorylates EF-2 on threonine residues. The Mr-100,000 band was phosphorylated exclusively on threonine residues, and its degree of 32P labelling was decreased by the Ca2+ chelator EGTA and by the calmodulin antagonist trifluoperazine. These agents attenuated the effects of okadaic acid on EF-2 phosphorylation and translation. When ranges of concentrations of each agent were tested, their effects on EF-2 labelling correlated well with their ability to reverse the okadaic acid-induced inhibition of translation. These findings demonstrate that increased phosphorylation of EF-2 results in an impairment of peptide-chain elongation when natural mRNA is used. The possible physiological role of EF-2 phosphorylation in the control of translation is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3