Processing and secretion in the neurohypophysis. Stability of isolated secretory vesicles and role of internal pH

Author:

Saermark T,Andersen N M,Atke A,Jones P M,Vilhardt H

Abstract

A possible role of low pH in secretory vesicles for processing and secretion in the neurohypophysis was investigated. Subcellular fractionation of guinea-pig neural lobes revealed that a proton present in the membranes from this tissue could not be ascribed to secretory vesicles. However, a proton pump was found in coated microvesicles. Secretory vesicles isolated from rats and guinea pigs were stable under conditions known to lyse secretory vesicles from the adrenal medulla owing to the generation of a proton gradient. These results suggest that the internal pH of secretory vesicles from the neurohypophysis is closer to neutral than is the pH in chromaffin secretory vesicles. Processing of a neurophysin-glycopeptide intermediate from the biosynthesis of vasopressin in intact secretory vesicles incubated in vitro was activated by the addition of NH4Cl, known to increase the intravesicular pH. This activation of neurohormone processing was also apparent in isolated nerve endings incubated in the presence of NH4Cl, suggesting that NH4Cl can also be used to increase the intravesicular pH in intact nerve endings. However, NH4Cl did not affect the secretion of neurohormones, indicating that a low intravesicular pH is not important for exocytosis in the neurohypophysis. Our results indicate that a low pH generated during processing by mechanisms other than ATP-dependent proton transport may inhibit the processing enzymes, thereby preventing extensive breakdown of neurohormone precursors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endopeptidases and prohormone processing;Bioscience Reports;1990-02-01

2. Chapter 7 Osmotic Effects in Membrane Fusion during Exocytosis;Current Topics in Membranes and Transport;1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3