Two distinct mechanisms for stimulation of oxygen-radical production by polymorphonuclear leucocytes

Author:

Hallett M B,Campbell A K

Abstract

Oxygen-radical production stimulated from rat polymorphonuclear leucocytes by either unopsonized latex particles (diameter = 1.01 microM) or chemotactic peptide (N-formyl-Met-Leu-Phe) was monitored by using luminol-dependent chemiluminescence. Azide inhibited by more than 80% the luminescence response induced by chemotactic peptide whether added before or after stimulation. However, the luminescence response to latex particles was progressively less susceptible to azide inhibition if the azide was added after the stimulus. Cytochalasin B, which was shown to abolish phagocytosis of the latex beads, also abolished the chemiluminescence response. However, the same cells showed a greatly enhanced response to chemotactic peptide. Cytochalasin B-treated cells secreted approx. 45% of total cellular myeloperoxidase in response to chemotactic peptide, but there was no detectable secretion in response to unopsonized latex particles. Microperoxidase equivalent to 20% of cellular peroxidase activity added to the cells before addition of the stimulus had no effect on the response to latex particles but increased approx. 2-fold the peak rate of chemiluminescence induced by chemotactic peptide. It was concluded that the unopsonized latex particles stimulated oxygen-radical production by the mechanism that involved endocytosis, whereas chemotactic peptide stimulated production by a mechanism that involved exocytosis of myeloperoxidase, the latter mechanism requiring an increase in intracellular free [Ca2+].

Publisher

Portland Press Ltd.

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiotoxicity of β-mimetic catecholamines during ontogenetic development — possible risks of antenatal therapy;Canadian Journal of Physiology and Pharmacology;2018-07

2. Bibliography;Intracellular Calcium;2014-10-16

3. Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells;RSC Adv.;2014-09-22

4. Phagocyte Luminescent Sensor;Handbook of Biosensors and Biochips;2008-03-15

5. Chemiluminescence as an Analytical Tool in Cell Biology and Medicine;Methods of Biochemical Analysis;2006-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3