Glutathione transferase Zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid

Author:

TONG Zeen1,BOARD Philip G.2,ANDERS M. W.1

Affiliation:

1. Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, U.S.A.

2. Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, GPO Box 34, Canberra, ACT 2601, Australia

Abstract

Dichloroacetic acid (DCA), a common drinking-water contaminant, is hepatocarcinogenic in rats and mice, and is a therapeutic agent used clinically in the management of lactic acidosis. DCA is biotransformed to glyoxylic acid by glutathione-dependent cytosolic enzymes in vitro and is metabolized to glyoxylic acid in vivo. The enzymes that catalyse the oxygenation of DCA to glyoxylic acid have not, however, been identified or characterized. In the present investigation, an enzyme that catalyses the glutathione-dependent oxygenation of DCA was purified to homogeneity (587-fold) from rat liver cytosol. SDS/PAGE and HPLC gel-filtration chromatography showed that the purified enzyme had a molecular mass of 27–28 kDa. Sequence analysis showed that the N-terminus of the purified protein was blocked. An internal sequence of 30 amino acid residues was obtained that matched the recently discovered human glutathione transferase Zeta well [Board, Baker, Chelvanayagam and Jermiin (1997) Biochem. J. 328, 929–935]. Western-blot analysis showed that the purified rat-liver enzyme cross-reacted with rabbit antiserum raised against recombinant human glutathione transferase Zeta. The apparent Km and Vmax values of the purified enzyme with DCA as the variable substrate were 71.4 µM and 1334 nmol/min per mg of protein, respectively; the Km for glutathione was 59 µM. Both the purified rat-liver enzyme and the recombinant human enzyme showed high activity with DCA as the substrate. These results demonstrate that the glutathione-dependent oxygenation of DCA to glyoxylic acid is catalysed by a Zeta-class glutathione transferase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glutathione Transferases;Reference Module in Biomedical Sciences;2024

2. Microwave spectrum and structure of a glyoxylic acid – formic acid complex☆;Journal of Molecular Spectroscopy;2023-05

3. Enzymes and Pathways Involved in Processing of Glutathione Conjugates;Reference Module in Biomedical Sciences;2023

4. Multi-Level System to Assess Toxicity in Water Distribution Plants;International Journal of Environmental Research and Public Health;2022-07-11

5. Glutathione and glutathione-dependent enzymes;Redox Chemistry and Biology of Thiols;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3