Derivation of Urinary Dopamine from Plasma Dihydroxyphenylalanine in Humans

Author:

Wolfovitz Efrat1,Grossman Ehud2,Folio Carol J.3,Keiser Harry R.3,Kopin Irwin J.1,Goldstein David S.1

Affiliation:

1. Clinical Neuroscience Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, U.S.A.

2. Hypertension Unit, Chaim Sheba Medical Center, Tel Ha-Shomer, Israel

3. Hypertension-Endocrine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, U.S.A.

Abstract

1. Dihydroxyphenylalanine is the precursor of all endogenous catecholamines. In laboratory animals, renal uptake and decarboxylation of circulating dihydroxyphenylalanine accounts for most of dopamine in urine. Dopamine is natriuretic, and in rats, dietary salt loading increases renal dihydroxyphenylalanine uptake by increasing the rate of entry (spillover) of dihydroxyphenylalanine into arterial plasma. In experimental animals and in humans, dietary salt loading increases urinary excretion of dihydroxyphenylalanine and dopamine. The present study examined in humans the extent to which circulating dihydroxyphenylalanine is the source of urinary dopamine and of the dopamine metabolite dihydroxyphenylacetic acid, and whether, as in animals, dietary salt loading affects dihydroxyphenylalanine spillover. 2. L-Dihydroxyphenylalanine (0.33 μg min−1 kg−1) was infused intravenously for 300 min after 7 days of a low-salt (mean 41 mmol/day) or a high-salt (mean 341 mmol/day) diet in 12 healthy subjects. Concentrations of dihydroxyphenylalanine, dopamine and dihydroxyphenylacetic acid were measured in urine and in antecubital venous plasma. Infusion of L-dihydroxyphenylalanine produced a steady-state mean dihydroxyphenylalanine level about 10 times the endogenous level. About 30% of infused dihydroxyphenylalanine estimated to be delivered to the kidneys via the arterial plasma was excreted as dopamine, and about 30% was excreted as dihydroxyphenylacetic acid. 3. Dietary salt loading increased urinary excretion rates of dihydroxyphenylalanine [from 0.08 ± (SEM) 0.01 to 0.14 ± 0.03 nmol/min, t = 2.80, P <0.02] and dopamine (from 1.03 ± 0.19 to 1.30 ± 0.28 nmol/min, t = 2.35, P <0.05), whereas dihydroxyphenylalanine spillover appeared to be unchanged. 4. Renal uptake and decarboxylation of circulating dihydroxyphenylalanine accounted for virtually all the urinary excretion of endogenous dopamine, but for only a minor portion of the excreted endogenous dihydroxyphenylacetic acid. 5. We conclude that in humans: (1) circulating dihydroxyphenylalanine is the main source of urinary dopamine but only a minor source of urinary dihydroxyphenylacetic acid; and (2) increased spillover of endogenous dihydroxyphenylalanine does not account for the increased excretion of these compounds during salt loading.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Intricacies of Renal Phosphate Reabsorption—An Overview;International Journal of Molecular Sciences;2024-04-25

2. Advanced functional materials for electrochemical dopamine sensors;TrAC Trends in Analytical Chemistry;2023-12

3. Anti-Inflammatory Effects of Peripheral Dopamine;International Journal of Molecular Sciences;2023-09-07

4. Biochemical Assessment of Pheochromocytoma and Paraganglioma;Endocrine Reviews;2023-03-30

5. The extended autonomic system: An integrative physiological perspective;Reference Module in Neuroscience and Biobehavioral Psychology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3