Soluble forms of the rabbit adipose tissue and liver growth hormone receptors are antigenically identical, but the integral membrane forms differ

Author:

Barnard R1,Rowlinson S W1,Waters M J1

Affiliation:

1. Department of Physiology and Pharmacology, University of Queensland, St. Lucia 4067, Queensland, Australia.

Abstract

Cytosolic, detergent-solubilized and membrane-bound growth hormone (GH) receptors from rabbit adipose tissue and liver were tested for reactivity with a panel of monoclonal antibodies (MAbs). The cytosolic and detergent-solubilized forms of adipose tissue and liver GH receptors were identically reactive with four precipitating and two hormone-binding-site-directed MAbs. However, the membrane-bound form of the adipose receptor was 1000-fold less reactive with one binding-site-directed MAb (MAb 7) than the membrane-bound liver GH receptor. Reactivity with another inhibitory MAb (MAb 263) was identical for adipose tissue and liver membrane GH receptors. The relative potency of 22,000-Mr and 20,000-Mr forms of human GH was identical in assays with liver and adipose tissue membrane receptors. Thus, contrary to earlier suggestions, the discrepancy between the growth-promoting and insulin-like activities of 20,000-Mr human GH cannot be rationalized by a difference in the affinity of this hormone for ‘somatogenic’ and ‘metabolic’ receptors when the comparison is made in the same species. Cross-linking studies showed that the major GH-binding subunit of liver and adipose tissue GH receptors had the same Mr (54,000 +/- 5000, reduced). The ligand-binding subunits of liver and adipose tissue receptors are identical by several criteria, but one epitope on the adipose tissue receptor appears to be masked upon membrane insertion, possibly by close association with a tissue-specific component. Tissue specificity may be determined by association of a ubiquitous GH-binding subunit with tissue-specific membrane components, rather than by differences in amino acid sequence.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3