Intestinal congestion and reperfusion injury: damage caused to the intestinal tract and distal organs

Author:

Chen Yajing12,Pu Weigao13ORCID,Maswikiti Ewetse Paul13,Tao Pengxian13,Li Xuemei13,Wang Dengfeng13,Gu Baohong13,Yu Yang13,Gao Lei13,Zhao Chengji2,Chen Hao14

Affiliation:

1. Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China

2. Department of Pediatric Surgery, Lanzhou University Second Hospital, Lanzhou, China

3. The Second Clinical Medical College, Lanzhou University, Lanzhou, China

4. Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China

Abstract

Abstract In clinical practice, intestinal autologous diseases, ailments and organ transplants can cause severe congestive damage to the intestinal tract. However, after the etiological factor is gotten rid of and blood flow is free without any hinderance, further damage to the intestinal wall often occurs, causing other related organ dysfunctions. This ultimately results in intestinal congestion reperfusion injury (ICRI). When the structure and function of the intestine are destroyed, bacteria, metabolites and endotoxins in the intestinal tract perfuse and enter the portal vein through the already compromised intestinal mucosa, to the other organs via the liver. Nevertheless, this gives rise to further aggravation of the injury, and reperfusion injury syndrome occurs. ICRI is a very common complication encountered by clinicians, and its harm is more severe and serious as compared with that caused by ischemia–reperfusion. Quite a few number of studies on ICRI have been reported to date. The exact mechanism of the injury is still idiopathic, and effective treatment strategies are still limited. Based on recent studies, this article is aimed at reviewing the destruction, damage mechanisms resulting from ICRI to the intestinal anatomical sites and distant organs. It is geared towards providing new ideas for the prevention and therapeutic approaches of ICRI.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3