Affiliation:
1. Department of Physiology, Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Calcutta 700 032, India
Abstract
The mechanism of suicidal inactivation of lactoperoxidase (LPO) by mercaptomethylimidazole (MMI) has been studied. Analogue studies indicate a specific requirement for the thiol group of MMI for inactivation of LPO in the presence of H2O2. MMI is oxidized via one-electron transfer by LPO compound II as demonstrated by a spectral shift from 430 to 412 nm through an isosbestic point at 421 nm. A decrease in Soret absorbance at 412 nm and the appearance of visible peaks at 592 and 636 nm are the characteristics of the inactivated enzyme. The one-electron oxidation product of MMI was identified by e.s.r. spectroscopy as the 5,5′-dimethyl-l-pyrroline N-oxide (DMPO) adduct of the sulphur-centred thiyl radical. Both inactivation and spectral change are prevented by the radical trap DMPO, suggesting involvement of the thiyl radical in inactivation. pH-dependent inactivation kinetics indicate the involvement of an ionizable group on LPO (pKa 6.1), deprotonation of which favours inactivation. The enzyme is protected by iodide and not by guaiacol, suggesting that MMI interacts at or near the iodide-binding site which is away from the aromatic-donor-binding site. The inactive enzyme can form compound II and bind aromatic donor, indicating that the MMI oxidation product does not attack haem iron or aromatic-donor-binding site. We suggest that MMI interacts at the iodide-binding site for oxidation and the reactive product, probably the thiyl radical, is incorporated into the adjacent electron-rich site of haem porphyrin to cause inactivation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献