Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells

Author:

GREWAL Jasjit S.1,TSAI Jeng Y.1,KHAN Saeed R.1

Affiliation:

1. Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610-0275, U.S.A.

Abstract

The AMBP [A1M (α1-microglobulin)/bikunin precursor] gene encodes two plasma glycoproteins: A1M, an immunosuppressive lipocalin, and bikunin, a member of plasma serine proteinase inhibitor family with prototypical Kunitz-type domain. Although previously believed to be constitutively expressed exclusively in liver, the present study demonstrates the induction of this gene by oxalate in porcine proximal tubular LLC-PK1 cells and rat kidney. In liver, the precursor protein is cleaved in the Golgi network by a furin-like enzyme to release constituent proteins, which undergo glycosylation before their export from the cell. In the renal tubular cells, A1M and bikunin co-precipitate, indicating lack of cleavage of the precursor protein. As the expression of the AMBP gene is regulated by A1M-specific cis elements and transcription factors, A1M protein was studied as a representative of AMBP gene expression in renal cells. Oxalate treatment (500 μM) resulted in a time- and dose-dependent induction of A1M protein in LLC-PK1 cells. Of the four transcription factors, HNF-4 (hepatocyte nuclear factor-4) has been reported previously to be a major regulator of AMBP gene expression in liver. Electrophoretic mobility-shift assay, supershift assay, immunoreactivity assay and transfection-based studies showed the presence of an HNF-4 or an HNF-4-like protein in the kidney, which can affect the expression of the AMBP gene. In situ hybridization and immunocytochemical studies showed that the expression of this gene in kidney was mainly restricted to cells lining the renal tubular system.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3