Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei

Author:

McDOWELL Mary Ann1,RANSOM Dawn M.1,BANGS James D.1

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI 53706, U.S.A.

Abstract

We have investigated the role of glycosylphosphatidylinositol (GPI) anchors in forward secretory trafficking using African trypanosomes as a model system. Soluble GPI-minus forms of variant surface glycoprotein (VSG), in which the C-terminal GPI-addition peptide signal is deleted, are secreted from transformed procyclic trypanosomes with 5-fold reduced kinetics, relative to matched GPI-anchored constructs. Cell fractionation and immunofluorescence localization studies indicate that the GPI-minus VSG reporters accumulate in the endoplasmic reticulum (ER). This transport defect is specific, since overexpression of GPI-minus VSG has no effect on the rate of transport of a second soluble secretory reporter (BiPN) when co-expressed in the same cells. Two results suggest that delayed forward transport cannot be accounted for by failure to fold/assemble in the absence of a GPI anchor, thereby leading to prolonged association with ER quality-control machinery. First, no evidence was found for elevated association of GPI-minus VSG with the ER molecular chaperone, BiP. Secondly, newly synthesized GPI-minus VSG is dimerized efficiently, as judged by velocity-sedimentation analysis. GPI-dependent transport is not confined to the VSG reporters, because a similar dependence is found with another trypanosomal GPI-anchored protein, trans-sialidase. These findings suggest that GPI structures act in a positive manner to mediate efficient forward transport of some, and perhaps all, GPI-anchored proteins in the early secretory pathway of trypanosomes. Possible mechanisms for GPI-dependent transport are discussed with respect to current models of vesicular trafficking.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3