Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+

Author:

BEECROFT Mike D.1,TAYLOR Colin W.1

Affiliation:

1. Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, U.K.

Abstract

The kinetics of Ins(1,4,5)P3 (InsP3)-stimulated Ca2+ release from intracellular stores are unusual in that submaximal concentrations of InsP3 rapidly release only a fraction of the InsP3-sensitive Ca2+ stores. By measuring unidirectional 45Ca2+ efflux from permeabilized rat hepatocytes, we demonstrate that such quantal responses to InsP3 occur at all temperatures between 2 and 37 °C, but at much lower rates at the lower temperatures. Preincubation with submaximal concentrations of InsP3, which themselves evoked quantal Ca2+ release, had no effect on the sensitivity of the stores to further additions of InsP3. The final Ca2+ content of the stores was the same whether they were stimulated with two submaximal doses of InsP3 or a single addition of the sum of these doses. Such incremental responses and the persistence of quantal behaviour at 2 °C indicate that InsP3-evoked receptor inactivation is unlikely to be the cause of quantal Ca2+ mobilization. Reducing the Ca2+ content of the intracellular stores by up to 45% did not affect their sensitivity to InsP3, but substantially reduced the time taken for each submaximal InsP3 concentration to exert its full effect. These results suggest that neither luminal nor cytosolic Ca2+ regulation of InsP3 receptors are the determinants of quantal behaviour. Our results are not therefore consistent with incremental responses to InsP3 depending on mechanisms involving attenuation of InsP3 receptor function by cytosolic or luminal Ca2+ or by InsP3 binding itself. We conclude that incremental activation of Ca2+ release results from all-or-nothing emptying of stores with heterogeneous sensitivities to InsP3. These characteristics allow rapid graded recruitment of InsP3-sensitive Ca2+ stores as the cytosolic InsP3 concentration increases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3