Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII

Author:

LEITING Barbara1,PRYOR KellyAnn D.1,WU Joseph K.1,MARSILIO Frank1,PATEL Reshma A.1,CRAIK Charles S.2,ELLMAN Jonathan A.3,CUMMINGS Richard T.1,THORNBERRY Nancy A.1

Affiliation:

1. Department of Metabolic Disorders, Merck Research Laboratories, Mail code RY50G-236, P.O. Box 2000, Rahway, NJ 07065, U.S.A.

2. Department of Pharmaceutical Chemistry, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0446, U.S.A.

3. Department of Chemistry, University of California, Berkeley, CA 94720, U.S.A.

Abstract

There is currently intense interest in the emerging group of proline-specific dipeptidases, and their roles in the regulation of biological processes. Dipeptidyl peptidase IV (DPP-IV) is involved in glucose metabolism by contributing to the regulation of glucagon family peptides and has emerged as a potential target for the treatment of metabolic diseases. Two other proline-specific dipeptidases, DPP-VII (also known as quiescent cell proline dipeptidase) and DPP-II, have unknown functions and have recently been suggested to be identical proteases based on a sequence comparison of human DPP-VII and rat DPP-II (78% identity) [Araki, Li, Yamamoto, Haneda, Nishi, Kikkawa and Ohkubo (2001) J. Biochem. 129, 279–288; Fukasawa, Fukasawa, Higaki, Shiina, Ohno, Ito, Otogoto and Ota (2001) Biochem. J. 353, 283–290]. To facilitate the identification of selective substrates and inhibitors for these enzymes, a complete biochemical profile of these enzymes was obtained. The pH profiles, substrate specificities as determined by positional scanning, Michaelis–Menten constants and inhibition profiles for DPP-VII and DPP-II were shown to be virtually identical, strongly supporting the hypothesis that they are the same protease. In addition, substrate specificities, catalytic constants and IC50 values were shown to be markedly different from those of DPP-IV. Selective DPP-IV and DPP-VII substrates were identified and they can be used to design selective inhibitors and probe further into the biology of these enzymes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3