Abstract
Physical properties of agricultural materials are essential in the development of machineries, equipment and devices. In this research, forty sample each of two unique varieties namely Jewel-orange flesh sweet potatoes (JOFSP) and Oriental-purple flesh sweet potatoes (OPFSP) physical properties were determined using standard methods and equations. The results show that JOFSP gave the mean length (110.68±24.59 mm), width(61.40±8.09 mm), geometric mean (39.72±8.19 mm), volume (187.78±73.85 ml), surface area (4950.00±203.32 mm2) and roundness (1.81±0.50) which were of higher values compared to that of OPFSP which gave the length (68.46±10.16 mm), width (59.32±5.82 mm), geometric mean (36.32±3.90 mm), volume (137.83±10.97 ml), surface area (4320.20±98.00 mm2) and roundness (1.41±0.30) respectively. JOFSP gave moisture content, thickness, mass, sphericity and true density of 58.00±10.17 %, 37.60±7.17 mm, 202.87±65.12 g, 0.35±0.08, and 1.17±0.27 g cm-3 which were of lower values compared to that of OPFSP which gave 79.32±3.84 %, 45.94±9.04 mm, 271.87±15.72 g, 0.53±0.08, and 1.89±0.14 g cm-3 for OPFSP respectively. The mean of the angle of repose and the static coefficient of friction considered for the three-separate surfaces namely plywood (9.35±2.87°, 0.17±0.05), stainless steel (8.50±3.50°,0.15±0.05) and galvanized steel (8.30±3.20°) of lower values for JOFSP compared to that of plywood which gave (11.80±2.25°, 0.21±0.04), stainless steel (9.90±2.02°, 0.19±0.05), galvanized steel (10.90±2.28°) for OPFSP while the coefficient static of friction of stainless steel for JOFSP gave a higher value of 0.20±0.13 compared to that of 0.17±0.04 for OPFSP respectively. These findings provide engineers with valuable information for designing different handling, grading, and drying systems for industrial processing.
Publisher
Turkish Journal of Agricultural Engineering Research
Reference30 articles.
1. Akaaimo DI and Raji OA (2006). Some physical engineering properties of prosopsis Africana seed. Biosystems Engineering, 95(2): 197-205.
2. Anazado UGN (1983). Force deformation analysis for biomaterials in radial compression: Maximum Contact Stress: apricot pit and its kernel. Journal of Food Engineering, 56: 49-57.
3. Aviara NA, Gwandzang MI and Haque MA (1999). Physical properties of guna seeds. Journal of Agricultural Research, 73: 105-111.
4. Balami AA, Mohammed IA, Adebayo SE, Adgidzi D and Adelemi AA (2012). The relevance of some engineering properties of cocoyam (Colocasia esculenta) in the design of postharvest processing machinery. Academic Research International, 2(3): 104-113.
5. Bart-Plange A and Baryeh EA (2003). The physical properties of category B cocoa beans. Journal of Food Engineering, 60: 219-227.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献