A Dual-Band Printed Slot Antenna for WiMAX and Metrological Wireless Applications

Author:

Mezaal Y. S.,Abdulkareem S. F.,Ali J. K.

Abstract

New microstrip antenna initiated from the portions of  1st order structures of Sierpinski square geometry is  modeled  in this paper as quasi-fractal device using an FR4 substrate of 4.4 dielectric constant, 1.6 mm thickness and 0.02 loss tangent. The intended microstrip antenna is designed for band frequencies  of 3.5 and 7.8 GHz for WiMAX and metrological satellite applications with a bandwidth of 0.66 and 0.78 GHz for each band respectively. The designed antenna has considerable compact size  that is smaller than many reported fractal and non-fractal antenna structures in the literature. Also, it has interesting return loss and radiation results that can be employed in diverse wireless devices. Measured input reflection coefficient, radiation patterns and gain results have been found in good agreement with those predicted by simulations.

Publisher

Advanced Electromagnetics

Subject

Electrical and Electronic Engineering,Radiation,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air pollution forecasting based on wireless communications: review;Environmental Monitoring and Assessment;2023-09-05

2. Miniaturized Antenna Array-Based Novel Metamaterial Technology for Reconfigurable MIMO Systems;Sensors;2023-06-25

3. Design and Simulation of a CRLH Transmission Line Antenna of a Hilbert Fractal Geometry for S-Band Appications;2021 International Conference on Electrical, Computer and Energy Technologies (ICECET);2021-12-09

4. New printed slot antennas with etched SIR components in the ground plane;Journal of Electromagnetic Waves and Applications;2021-08-30

5. Applications of Fractal and Quasi Fractal Geometries in Slot Antenna Design: A Review;JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES;2019-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3