Thermal conductivity of urban and artificial soils: methodological aspects and mathematical modeling

Author:

Kokoreva A. A.1,Kozhunov A. V.2,Butylkina M. A.3,Dymova I. V.3,Stepanenko V. M.3,Ivanova A. E.3

Affiliation:

1. Lomonosov Moscow State University Federal State Budgetary Institution of Science “Institute of Forestry of the Russian Academy of Sciences”

2. Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev

3. Lomonosov Moscow State University

Abstract

There are various methods for experimental determination of the thermal conductivity dependence on soil moisture and substrates. The influence of the sample structure (monolith, bulk sample), sample temperature, the method of installing the probe into the sample on the obtained readings of the TEMPOS device was studied and methodological recommendations were proposed. The dependence of thermal conductivity of soils bulk samples and substrates on moisture is shown. The spread of thermal conductivity values in the moisture range from hygroscopic to full moisture capacity for soddy-podzolic soil is 0.229–1.430 W/(m*K), for peat – 0.250–0.521 W/(m*K), for sand – 0.280–2.605 W/(m*K), for a mixture – 0.234–1.568 W/(m*K). ). The influence of properties such as density, particle size distribution, specific surface area, organic matter content, salinity affected thermal properties to a lesser extent. The established patterns can be used to calculate the temperature regime of soils in solving a number of applied problems related to the construction of special soil objects, for example, when creating urban soil structures. For this, it is necessary either to determine the thermal conductivity experimentally, or to calculate it, using the physical parameters of soils and substrates. The first method is labor-consuming, the second is less accurate. As an example, the equations available for work in the HYDRUS-1D (Chang–Horton and Campbell) model are used. These equations either overestimate the thermal conductivity in the area of high substrate humidity, or underestimate the thermal conductivity in the area of low substrate humidity (sand, loam, peat and a mixture based on them).

Publisher

V.V. Dokuchaev Soil Science Institute

Reference44 articles.

1. Bolotov A.G., Teplofizicheskoe sostoyanie pochv i sovershenstvovanie instrumental'noi bazy dlya ego issledovanii: Dis… kand. s.-kh. nauk (Thermophysical state of soils and improvement of the instrumental base for its research, Cand. agricultural sci. thesis), Barnaul: Altaiskii gosudarstvennyi agrarnyi universitet, 2003, 148 p.

2. Bolotov A.G., Bekhovykh Yu.V., Semenov G.A., Opredelenie teplofizicheskikh svoistv kapillyarno-poristykh tel impul'snym metodom s ispol'zovaniem tekhnologii vizual'nogo programmirovaniya (Determination of thermophysical properties of capillary-porous bodies by pulse method using visual programming technology), Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2010, No. 6(68), pp. 37–40.

3. Gringof I.G., Pasechnyuk B.V., Agrometeorologiya i agrometeorologicheskie nablyudeniya (Agrometeorology and agrometeorological observations), Saint-Petersburg: Gidrometeoizdat, 2005, 552 p.

4. Gyulalyev Ch.G., Vliyanie vlazhnosti i udel'noi poverkhnosti na temperaturoprovodnost' pochv (Influence of humidity and specific surface area on soil thermal conductivity), Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2015, No. 8(130), pp. 71–75.

5. Dmitriev E.A., Matematicheskaya statistika v pochvovedenii (Mathematical statistics in soil science), Moscow: Knizhnyi dom “LIBROKOM”, 2009, 328 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3