A genetics algorithms for optimizing a function over the integer efficient set

Author:

Zaidi Ali1ORCID,Chaabane Djamal1,Asli Larbi2,Idir Lamine3,Matoub Saida3

Affiliation:

1. Laboratory of Multiple Criteria Decision and Operations Research (AMCD and RO), Faculty of Mathematics, USTHB University, Bab-Ezzouar

2. LaMOS Laboratory, Faculty of Exact Sciences, University of Bejaia

3. Centre for Research in Amazigh Language and Culture (CRLCA)

Abstract

In this paper, we propose an algorithm called Directional Exploration Genetic Algorithm (DEGA) to resolve a function Phi over the efficient set of a multi-objective integer linear programming problem (MOILP). DEGA algorithm belongs to evolutionary algorithms, which operate on the decision space by choosing the fastest improving directions that improve the objectives functions and Phi function. Two variants of this algorithm and a basic version of the genetic algorithm (BVGA) are performed and implemented in Python. Several benchmarks are carried out to evaluate the algorithm's performances and interesting results are obtained and discussed.

Publisher

Croatian Operational Research Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3