Performance of a Large Language Model in Screening Citations

Author:

Oami Takehiko1,Okada Yohei23,Nakada Taka-aki1

Affiliation:

1. Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan

2. Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan

3. Health Services and Systems Research, Duke-NUS Medical School, National University of Singapore, Singapore

Abstract

ImportanceLarge language models (LLMs) are promising as tools for citation screening in systematic reviews. However, their applicability has not yet been determined.ObjectiveTo evaluate the accuracy and efficiency of an LLM in title and abstract literature screening.Design, Setting, and ParticipantsThis prospective diagnostic study used the data from the title and abstract screening process for 5 clinical questions (CQs) in the development of the Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock. The LLM decided to include or exclude citations based on the inclusion and exclusion criteria in terms of patient, population, problem; intervention; comparison; and study design of the selected CQ and was compared with the conventional method for title and abstract screening. This study was conducted from January 7 to 15, 2024.ExposuresLLM (GPT-4 Turbo)–assisted citation screening or the conventional method.Main Outcomes and MeasuresThe sensitivity and specificity of the LLM-assisted screening process was calculated, and the full-text screening result using the conventional method was set as the reference standard in the primary analysis. Pooled sensitivity and specificity were also estimated, and screening times of the 2 methods were compared.ResultsIn the conventional citation screening process, 8 of 5634 publications in CQ 1, 4 of 3418 in CQ 2, 4 of 1038 in CQ 3, 17 of 4326 in CQ 4, and 8 of 2253 in CQ 5 were selected. In the primary analysis of 5 CQs, LLM-assisted citation screening demonstrated an integrated sensitivity of 0.75 (95% CI, 0.43 to 0.92) and specificity of 0.99 (95% CI, 0.99 to 0.99). Post hoc modifications to the command prompt improved the integrated sensitivity to 0.91 (95% CI, 0.77 to 0.97) without substantially compromising specificity (0.98 [95% CI, 0.96 to 0.99]). Additionally, LLM-assisted screening was associated with reduced time for processing 100 studies (1.3 minutes vs 17.2 minutes for conventional screening methods; mean difference, −15.25 minutes [95% CI, −17.70 to −12.79 minutes]).Conclusions and RelevanceIn this prospective diagnostic study investigating the performance of LLM-assisted citation screening, the model demonstrated acceptable sensitivity and reasonably high specificity with reduced processing time. This novel method could potentially enhance efficiency and reduce workload in systematic reviews.

Publisher

American Medical Association (AMA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3