Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports

Author:

Torres-Lopez Victor M.1,Rovenolt Grace E.1,Olcese Angelo J.1,Garcia Gabriella E.1,Chacko Sarah M.1,Robinson Amber1,Gaiser Edward1,Acosta Julian1,Herman Alison L.1,Kuohn Lindsey R.1,Leary Megan1,Soto Alexandria L.1,Zhang Qiang1,Fatima Safoora2,Falcone Guido J.1,Payabvash Seyedmehdi3,Sharma Richa1,Struck Aaron F.24,Sheth Kevin N.1,Westover M. Brandon5,Kim Jennifer A.1

Affiliation:

1. Department of Neurology, Yale University, New Haven, Connecticut

2. Department of Neurology, University of Wisconsin, Madison

3. Department of Radiology, Yale University, New Haven, Connecticut

4. William S Middleton Veterans Hospital, Madison, Wisconsin

5. Department of Neurology, Massachusetts General Hospital, Boston

Abstract

ImportanceClinical text reports from head computed tomography (CT) represent rich, incompletely utilized information regarding acute brain injuries and neurologic outcomes. CT reports are unstructured; thus, extracting information at scale requires automated natural language processing (NLP). However, designing new NLP algorithms for each individual injury category is an unwieldy proposition. An NLP tool that summarizes all injuries in head CT reports would facilitate exploration of large data sets for clinical significance of neuroradiological findings.ObjectiveTo automatically extract acute brain pathological data and their features from head CT reports.Design, Setting, and ParticipantsThis diagnostic study developed a 2-part named entity recognition (NER) NLP model to extract and summarize data on acute brain injuries from head CT reports. The model, termed BrainNERD, extracts and summarizes detailed brain injury information for research applications. Model development included building and comparing 2 NER models using a custom dictionary of terms, including lesion type, location, size, and age, then designing a rule-based decoder using NER outputs to evaluate for the presence or absence of injury subtypes. BrainNERD was evaluated against independent test data sets of manually classified reports, including 2 external validation sets. The model was trained on head CT reports from 1152 patients generated by neuroradiologists at the Yale Acute Brain Injury Biorepository. External validation was conducted using reports from 2 outside institutions. Analyses were conducted from May 2020 to December 2021.Main Outcomes and MeasuresPerformance of the BrainNERD model was evaluated using precision, recall, and F1 scores based on manually labeled independent test data sets.ResultsA total of 1152 patients (mean [SD] age, 67.6 [16.1] years; 586 [52%] men), were included in the training set. NER training using transformer architecture and bidirectional encoder representations from transformers was significantly faster than spaCy. For all metrics, the 10-fold cross-validation performance was 93% to 99%. The final test performance metrics for the NER test data set were 98.82% (95% CI, 98.37%-98.93%) for precision, 98.81% (95% CI, 98.46%-99.06%) for recall, and 98.81% (95% CI, 98.40%-98.94%) for the F score. The expert review comparison metrics were 99.06% (95% CI, 97.89%-99.13%) for precision, 98.10% (95% CI, 97.93%-98.77%) for recall, and 98.57% (95% CI, 97.78%-99.10%) for the F score. The decoder test set metrics were 96.06% (95% CI, 95.01%-97.16%) for precision, 96.42% (95% CI, 94.50%-97.87%) for recall, and 96.18% (95% CI, 95.151%-97.16%) for the F score. Performance in external institution report validation including 1053 head CR reports was greater than 96%.Conclusions and RelevanceThese findings suggest that the BrainNERD model accurately extracted acute brain injury terms and their properties from head CT text reports. This freely available new tool could advance clinical research by integrating information in easily gathered head CT reports to expand knowledge of acute brain injury radiographic phenotypes.

Publisher

American Medical Association (AMA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3