Key Roles of CACNA1C/Cav1.2 and CALB1/Calbindin in Prefrontal Neurons Altered in Cognitive Disorders

Author:

Datta Dibyadeep12,Yang Shengtao1,Joyce Mary Kate P.1,Woo Elizabeth1,McCarroll Steven A.34,Gonzalez-Burgos Guillermo5,Perone Isabella1,Uchendu Stacy1,Ling Emi4,Goldman Melissa4,Berretta Sabina67,Murray John2,Morozov Yury1,Arellano Jon1,Duque Alvaro1,Rakic Pasko1,O’Dell Ryan2,van Dyck Christopher H.12,Lewis David A.5,Wang Min1,Krienen Fenna M.8,Arnsten Amy F. T.1

Affiliation:

1. Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut

2. Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut

3. Department of Genetics, Harvard Medical School, Boston, Massachusetts

4. Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts

5. Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania

6. Basic Neuroscience Division, McLean Hospital, Belmont, Massachusetts

7. Department of Psychiatry, Harvard Medical School, Boston, Massachusetts

8. Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey

Abstract

ImportanceThe risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders.ObjectiveTo examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices.Design, Setting, and ParticipantsThe design included transcriptomic analyses from human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression, physiology, and cognitive behavior in macaques. The research was performed in academic laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral prefrontal cortex only exists in primates, the work evaluated humans and macaques.Main Outcomes and MeasuresOutcome measures included transcriptomic signatures of human and macaque pyramidal cells, protein expression and interactions in layer III macaque pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial working memory, and working memory performance following pharmacological treatments.ResultsLayer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of calcium-related proteins, delineated by CALB1 (calbindin), and high levels of CACNA1C (Cav1.2), GRIN2B (NMDA receptor GluN2B), and KCNN3 (SK3 potassium channel), concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum. L-type calcium channels influenced neuronal firing needed for working memory, where either blockade or increased drive by β1-adrenoceptors, reduced neuronal firing by a mean (SD) 37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An L-type calcium channel blocker or β1-adrenoceptor antagonist protected working memory from stress.Conclusions and RelevanceThe layer III pyramidal cells in the dorsolateral prefrontal cortex especially vulnerable in cognitive disorders differentially express calbindin and a constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C), GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence memory-related neuronal firing. The finding that either inadequate or excessive L-type calcium channel activation reduced neuronal firing explains why either loss- or gain-of-function variants in CACNA1C were associated with increased risk of cognitive disorders. The selective expression of calbindin in these pyramidal cells highlights the importance of regulatory mechanisms in neurons with high calcium signaling, consistent with Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.

Publisher

American Medical Association (AMA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3