Deep Learning for Cardiovascular Imaging

Author:

Wehbe Ramsey M.12,Katsaggelos Aggelos K.3,Hammond Kristian J.4,Hong Ha5,Ahmad Faraz S.267,Ouyang David8,Shah Sanjiv J.27,McCarthy Patrick M.97,Thomas James D.27

Affiliation:

1. Division of Cardiology, Department of Medicine & Biomedical Informatics Center, Medical University of South Carolina, Charleston

2. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois

3. Department of Computer and Electrical Engineering, Northwestern University, Evanston, Illinois

4. Department of Computer Science, Northwestern University, Evanston, Illinois

5. Medtronic, Minneapolis, Minnesota

6. Center for Health Information Partnerships, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois

7. Center for Artificial Intelligence, Northwestern Medicine Bluhm Cardiovascular Institute, Chicago, Illinois

8. Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California

9. Division of Cardiac Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois

Abstract

ImportanceArtificial intelligence (AI), driven by advances in deep learning (DL), has the potential to reshape the field of cardiovascular imaging (CVI). While DL for CVI is still in its infancy, research is accelerating to aid in the acquisition, processing, and/or interpretation of CVI across various modalities, with several commercial products already in clinical use. It is imperative that cardiovascular imagers are familiar with DL systems, including a basic understanding of how they work, their relative strengths compared with other automated systems, and possible pitfalls in their implementation. The goal of this article is to review the methodology and application of DL to CVI in a simple, digestible fashion toward demystifying this emerging technology.ObservationsAt its core, DL is simply the application of a series of tunable mathematical operations that translate input data into a desired output. Based on artificial neural networks that are inspired by the human nervous system, there are several types of DL architectures suited to different tasks; convolutional neural networks are particularly adept at extracting valuable information from CVI data. We survey some of the notable applications of DL to tasks across the spectrum of CVI modalities. We also discuss challenges in the development and implementation of DL systems, including avoiding overfitting, preventing systematic bias, improving explainability, and fostering a human-machine partnership. Finally, we conclude with a vision of the future of DL for CVI.Conclusions and RelevanceDeep learning has the potential to meaningfully affect the field of CVI. Rather than a threat, DL could be seen as a partner to cardiovascular imagers in reducing technical burden and improving efficiency and quality of care. High-quality prospective evidence is still needed to demonstrate how the benefits of DL CVI systems may outweigh the risks.

Publisher

American Medical Association (AMA)

Subject

Cardiology and Cardiovascular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3