MicroRNA-630: A promising avenue for alleviating inflammation in diabetic kidney disease

Author:

Donate-Correa Javier,González-Luis Ainhoa,Díaz-Vera Jésica,Hernandez-Fernaud Juan Ramón

Abstract

Diabetic kidney disease (DKD) is one of the complications of diabetes, affecting millions of people worldwide. The relentless progression of this condition can lead to kidney failure, requiring life-altering interventions such as dialysis or transplants. Accumulating evidence suggests that immunologic and inflammatory elements play an important role in initiating and perpetuating the damage inflicted on renal tissues, exacerbating the decline in organ function. Toll-like receptors (TLRs) are a family of receptors that play a role in the activation of the innate immune system by the recognition of pathogen-associated molecular patterns. Recent data from in vitro and in vivo studies have highlighted the critical role of TLRs, mainly TLR2 and TLR4, in the pathogenesis of DKD. In the diabetic milieu, these TLRs recognize diabetic-associated molecular signals, triggering a proinflammatory cascade that initiates and perpetuates inflammation and fibrogenesis in the diabetic kidney. Emerging non-traditional strategies targeting TLR signaling with potential therapeutic implications in DKD have been pro-posed. One of these approaches is the use of microRNAs, small non-coding RNAs that can regulate gene expression. This editorial comments on the results of this approach carried out in a rat model of diabetes by Wu et al, published in this issue of the World Journal of Diabetes . The results of the experimental study by Wu et al shows that microRNA-630 decreased levels compared to non-diabetic rats. Additionally, microRNA-630 exerted anti-inflammatory effects in the kidneys of diabetic rats through the modulation of TLR4. These findings indicate that the microRNA-630/TLR4 axis might represent a pathological mechanism of DKD and a potential therapeutic target capable of curbing the destructive inflammation characteristic of DKD.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3