The mechanics of initiation and development of thrust faults and thrust ramps

Author:

Wigginton Sarah S.,Petrie Elizabeth S.,Evans James P.

Abstract

This study integrates the results of numerical modeling analyses based on outcrop studies and structural kinematic restorations to evaluate the mechanics of thrust fault initiation and development in mechanically layered sedimentary rocks. A field-based reconstruction of a mesoscopic thrust fault at Ketobe Knob in central Utah provides evidence of thrust ramp nucleation in competent units, and fault propagation upward and downward into weaker units at both fault tips. We investigate the effects of mechanical stratigraphy on stress heterogeneity, rupture direction, fold formation, and fault geometry motivated by the geometry of the Ketobe Knob thrust fault in central Utah; the finite element modeling examines how mechanical stratigraphy, load conditions, and fault configurations influence temporal and spatial variation in stress and strain. Our modeling focuses on the predicted deformation and stress distributions in four model domains: (1) an intact, mechanically stratified rock sequence, (2) a mechanically stratified section with a range of interlayer frictional strengths, and two faulted models, (3) one with a stress loading condition, and (4) one with a displacement loading condition. The models show that early stress increase in competent rock layers are accompanied by low stresses in the weaker rocks. The frictional models reveal that the heterogeneous stress variations increase contact frictional strength. Faulted models with a 20° dipping fault in the most competent unit result in stress increases above and below fault tips, with extremely high stresses predicted in a ‘back thrust’ location at the lower fault tip. These findings support the hypothesis that thrust faults and associated folds at the Ketobe Knob developed in accordance with a ramp-first kinematic model and development of structures was significantly influenced by the nature of the mechanical stratigraphy.

Publisher

Rocky Mountain Association of Geologists

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ramps first – Interpreting thrust nucleation in multilayers;Journal of Structural Geology;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3